Homomorphism

Return to Glossary.

**Formal Definition**

A map $\phi$ of a group $G$ into a group $G'$ is a **homomorphism** if the homomorphism property

\begin{align} \phi(ab)=\phi(a)\phi(b) \end{align}

holds for all $a,b\in G$

**Informal Definition**

A map $\phi$ of a group $\langle S, *\rangle$ into a group $\langle S', *'\rangle$ is a **homomorphism** if

\begin{align} \phi (a*b)=\phi (a) *'\phi (b) \end{align}

for all $a,b\in S$

**Example(s)**

Let $\phi: \mathbb{Z} \longrightarrow \mathbb{Z}_n$. $m \longrightarrow m\ mod\ n$ is a homomorphism.

**Non-example(s)**

**Additional Comments**

For any groups $G$ and $G'$ ,there is always at least one homomorphism $\phi:G\rightarrow G'$,namely the **trivial homomorphism** defined by $\phi(g)=e'$ for all $g\in G$ , where $e'$ is the identity in $G'$.