Homomorphism
Return to Glossary.
Formal Definition
A map $\phi$ of a group $G$ into a group $G'$ is a homomorphism if the homomorphism property
(1)\begin{align} \phi(ab)=\phi(a)\phi(b) \end{align}
holds for all $a,b\in G$
Informal Definition
A map $\phi$ of a group $\langle S, *\rangle$ into a group $\langle S', *'\rangle$ is a homomorphism if
(2)\begin{align} \phi (a*b)=\phi (a) *'\phi (b) \end{align}
for all $a,b\in S$
Example(s)
Let $\phi: \mathbb{Z} \longrightarrow \mathbb{Z}_n$. $m \longrightarrow m\ mod\ n$ is a homomorphism.
Non-example(s)
Additional Comments
For any groups $G$ and $G'$ ,there is always at least one homomorphism $\phi:G\rightarrow G'$,namely the trivial homomorphism defined by $\phi(g)=e'$ for all $g\in G$ , where $e'$ is the identity in $G'$.