Hw5 Problem 4

Return to Homework 5, Glossary, Theorems

Problem 4

Which of the following groups are cyclic? For each cyclic group, list all the generators of the group.
(a) $G_1=\langle\mathbb{Z},+\rangle$ (b) $G_2=\{a+b\sqrt{5}|a,b\in\mathbb{Z}\}$ under addition (c) $G_3=\langle\mathbb{Q^+},\cdot\rangle$ (d) $G_4=\langle\mathbb{Q},+\rangle$
(e) $G_5=\langle\mathbb{7Z},+\rangle$ (f) $G_6=\{7^n|n\in\mathbb{Z}\}$ under multiplication

(a), (e), (f) are the cyclic groups.
(a):The generators of $G_1$ are $\langle1\rangle$, $\langle-1\rangle$
(e):The generators of $G_5$ are $\langle7\rangle$, $\langle-7\rangle$
(f):The generators of $G_6$ are $\langle7\rangle$, $\langle7^{-1}\rangle$

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License