Return to Homework 5
Problem 6
(a) Create a table for the group $\mathbb Z_8$ under addition.
(b) Compute the subgroups $\langle 0 \rangle$, $\langle 1 \rangle$, $\langle 2 \rangle$, $\langle 3 \rangle$, $\langle 4 \rangle$, $\langle 5 \rangle$, $\langle 6 \rangle$, $\langle 7 \rangle$.
(c) Which elements are generators for the group $\mathbb Z_8$?
(d) Give the subgroup diagram for the part (b) subgroups of $\mathbb Z_8$.
Solution
(a) Create a table for the group $\mathbb Z_8$ under addition.
(b) Compute the subgroups $\langle 0 \rangle$, $\langle 1 \rangle$, $\langle 2 \rangle$, $\langle 3 \rangle$, $\langle 4 \rangle$, $\langle 5 \rangle$, $\langle 6 \rangle$, $\langle 7 \rangle$.
$\langle 0 \rangle = \{0\}$
$\langle 1 \rangle = \{0, 1, 2, 3, 4, 5, 6, 7\}$
$\langle 2 \rangle = \{0, 2, 4, 6\}$
$\langle 3 \rangle = \{0, 1, 2, 3, 4, 5, 6, 7\}$
$\langle 4 \rangle = \{0, 4\}$
$\langle 5 \rangle = \{0, 1, 2, 3, 4, 5, 6, 7\}$
$\langle 6 \rangle = \{0, 2, 4, 6\}$
$\langle 7 \rangle = \{0, 1, 2, 3, 4, 5, 6, 7\}$
(c) Which elements are generators for the group $\mathbb Z_8$?
The generators of the group $\mathbb Z_8$ are $1, 3, 5, 7$
(d) Give the subgroup diagram for the part (b) subgroups of $\mathbb Z_8$.
(2)