Relation

Return to Glossary.

Formal Definition


A relation between sets $A$ and $B$ is a subset $\Re$ of $A \times B$.We read $(a,b)\in \Re$ as "$a$ is related to $b$" and write $a\Re b$.

Informal Definition


Replace this text with an informal definition.

Example(s)


The graph of the function $f$ where $f(x)=x$3 for all $x\in \Re$,is the subset $\{(x,x^3)|x\in \mathbb{R}\}$ of $\mathbb{R}\times\mathbb{R}$.Thus it is a relation on $\mathbb{R}$.

Non-example(s)


The graph of the function $f$ where $f(x)=x$2 for all $x\in \Re$,is the subset $\{(x,x^2)|x\in \mathbb{R}\}$ of $\mathbb{R}\times\mathbb{R}^+$.Thus it is not a relation on $\mathbb{R}$ because it doesn't graph the $\mathbb{R}^-$.

Additional Comments


Add any other comments you have about the term here.

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License